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Long-time tracer diffusion of nonspherical Brownian particles
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The long-time tracer-diffusion properties of a nonspherical Brownian particle that interacts with a suspen-
sion of spherical particles are studied in terms of an idealized but nontrivial two-dimensional model system.
For this system, the predictions of the generalized Langevin equation approach to tracer diffusion can be
calculated, and compared with the~extrapolated! results of a computer simulation experiment. In the model,
the nonspherical particle is represented by a rigid linear array ofNT ~52 or 3! spherical particles with
nearest-neighbor separationDL. We calculate the long-time rotational and~transverse and longitudinal! trans-
lational diffusion coefficients. The theory is found to reproduce qualitatively and quantitatively the main
features of the extrapolated results. Finally, we also present theoretical results that derive from still simpler
approximate theoretical schemes.

PACS number~s!: 05.20.2y
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I. INTRODUCTION

The diffusion properties of suspensions ofsphericalcol-
loidal particles have been the subject of considerable inte
for many years@1–5#. In fact, there are some theoretic
methods aimed at explaining the main features of these
namic properties in terms of interparticle forces@2–5#. How-
ever, the statistical mechanical description of the diffus
properties of suspensions involvingnonsphericalparticles is
still to be developed. Recently, however, one such meth
namely, the generalized Langevin equation~GLE! approach
to tracer diffusion@5# has been extended@6# to study the
Brownian motion of a suspension with nonspherical p
ticles. In this paper, we present the predictions of this th
retical approach as applied to the description of the diffus
properties of nonspherical colloidal tracer particles. The n
spherical Brownian particle of our model system is rep
sented by a linear array ofNT ~52 or 3! spherical particles
with nearest-neighbor separationDL, rigidly bound to each
other by imaginary forces. This nonspherical particle e
ecutes Brownian motion while interacting with the Browni
particles of the supporting two-dimensional colloidal susp
sion only through direct interactions~i.e., in the absence o
hydrodynamic interactions!. Here we report some aspects
our study of tracer-diffusion phenomena in this simple b
not trivial model system. We study the dependence of
long-time rotational and traslational diffusion coefficients
the nonspherical particle on parameters such as the pa
concentrationn of the supporting suspension. Our aim
only to describe a few general features of these long-t
properties, and to assess the accuracy of the prediction
the GLE approach, by means of their comparison with
results of a computer simulation experiment.

In the following section we provide a detailed definitio
of our model system, and summarize the theoretical bas
the approximate theoretical calculation of its time-depend
tracer-diffusion properties in the long-time regime. We
PRE 611063-651X/2000/61~6!/6368~7!/$15.00
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port and analyze these theoretical results in the contex
their comparison with the calculation of the same proper
computed through an extrapolation procedure applied to
Brownian dynamics simulation data of the model. In Sec.
we present and analyze the results of the application of
GLE approach together two approximations, namely, the
tal and partial superposition approximations. Finally, Sec.
contains a brief summary of the most relevant conclusion

II. ANALYSIS OF THE LONG-TIME REGIME

A. Generalized Langevin equation approach

Our system consists of a two-dimensional model Brow
ian fluid of spherical particles that interact through the ha
sphere plus repulsive Yukawa pair potential

bu~r !5H K exp@2z~r /s21!#/~r /s!, r .s

1`, r<s,
~2.1!

where s is the hard-sphere diameter,b215kBT, with kB
being Boltzmann’s constant andT the temperature,z is the
screening parameter~in units ofs21), andK is the potential
energy of two particles at contact, in units ofkBT. These
spherical~i.e., circular or disklike in our two-dimensiona
system! particles are present at bulk number concentration
~or reduced number concentrationn* [ns2). In addition to
these spherical Brownian particles, we also have a sin
nonsphericalBrownian particle, namely, a rigid linear arra
of NT spherical particles, whose interaction with one of t
‘‘free’’ spheres located at positionr is given by

c~r !5(
i 51

NT

u~ ur2Ri u!, ~2.2!

where Ri ( i 51,2, . . . ,NT) are the positions of theNT
spheres that constitute the nonspherical particle. In the re
ence frame attached to this rigid array, each one of theRi
6368 ©2000 The American Physical Society
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remains constant and is chosen to lie along theY axis, so that
its Cartesian coordinates areXi50 and Yi5(NT11
22i )DL/2. In this paper we consider only two case
namely, a ‘‘dimer’’ (NT52) and a ‘‘trimer’’ (NT53). Fur-
thermore, throughout this work we shall keep the values
the Yukawa parameters fixed toK5500 andz50.15, which
correspond to a system and conditions widely studied e
where in the absence of the nonspherical tracer particle@7#.

The purpose of this work is to present results for the lo
time translational and rotational diffusion coefficients, d
fined as

Da
L5 lim

t→`

^@Dr a~ t !#2&
2t

, a5',i ,R, ~2.3!

whereDr'(t) andDr i(t) are, respectively, the componen
of the translational displacement of the tracer particle’s c
ter of mass at timet in the transverse (') and longitudinal
(i) directions refered to the particle’s main axis, where
Dr R(t) is the angular displacement at timet. The long-time
diffusion coefficients contain information on the effects
direct interactions between the tracer particle and all
spherical particles around it. On the other hand, these d
sion coefficients are related to the friction coefficients
Einstein’s relation,

Da
L5

kBT

ja
01Dja

, ~2.4!

whereja
0 is the free-diffusion friction coefficient~i.e., in the

absence of interactions!, whereasDja represents the contri
bution of the direct interactions to the total effective frictio
on the tracer. This termDja in Eq. ~2.4! is the time integral
of the time-dependent friction functionDja(t). The main
result of the generalized Langevin equation approach@5# is a
general expression for this property. For our model syst
an approximate form of such a general expression, on wh
we will base our present work, is

Dja5E
0

`

dt Dja~ t !5
kBTn

~2p!2E d2k
uK̃k

(a)H~k!u2

k2@S~k!DCM
0 1D0#

.

~2.5!

In this expression,S(k) is the structure factor of the colloida
fluid in the absence of the nonspherical tracer. The func
H(k) is the Fourier transform of the total correlation fun
tion H(r ) between the tracer and a sphere of the fluid, i
H(r )[G(r )21, whereneq(r )[nG(r ) is the local concen-
tration of the spheres at positionr around the tracer particle
The operatorsK̃k

(a) are defined by

K̃k
(')[2 ikx , K̃k

(i)[2 iky , K̃k
(R)[kx

]

]ky
2ky

]

]kx
.

~2.6!

In this paper, we focus on the application of this expr
sion for the friction function to compute the diffusion coe
ficients of our nonspherical particle as a function of the c
centrationn of the spherical particles. The details of th
derivation of Eq.~2.5! for Dja(t) are given in previous pa
,
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pers@8,9#, from which we adopt all the definitions and con
cepts. Thus, the parameterDCM

0 [(D'
0 1D uu

0)/2 in Eq.~2.5! is
the free-diffusion coefficient of the center of mass of t
tracer defined in terms of the perpendicular and parallel
fusion coefficients. As in Refs.@8# and @9#, the translational
and rotational free-diffusion coefficients of the tracer are
sumed to be given by

D'
0 5D i

05D0/NT and DR
05D0/NTR 2, ~2.7!

whereR is the radius of gyration of our nonspherical pa
ticle, i.e.,

R 2[(
i 51

NT

r i
2/NT , ~2.8!

with r i being the distance between thei th sphere of the trace
particle and the tracer’s center of mass. The definition of
free-diffusion coefficients given in Eq.~2.7! is in terms of
the free-diffusion coefficientD0 of a free sphere. The spe
cific value ofD0 will not be needed, since this parameter w
only be used to define dimensionless quantities. Finally,
free-diffusion coefficients of the tracer (Da

0) and of the
sphere (D0) are related to the friction coefficientsja

0 andj0,
respectively, through the Einstein relationsDa

05kBT/ja
0 and

D05kBT/j0.
Additionally, in order to understand the predicted beha

ior of Da
L as a function of the concentrationn of the support-

ing suspension, it will be convenient to analyze the coe
cients of the expansion ofDa

L in a power series of the
concentration. For this purpose, we first derive the expans
of the friction functionDja in Eq. ~2.5!, i.e.,

Dja

ja
0

5F ]

]n S Dja

ja
0 D G

n50

n1F1

2

]2

]n2 S Dja

ja
0 D G

n50

n21•••,

~2.9!

where the coefficients of the linear and quadratic terms
given, respectively, by

F ]

]n S Dja

ja
0 D G

n50

5
Da

~2p!2E d2k
uK̃k

(a)H0~k!u2

k2~DCM1D0!
,

~2.10a!

F1

2

]2

]n2 S Dja

ja
0 D G

n50

5
Da

~2p!2E d2kS 2 Re$@~K̃k
(a)H0~k!#* @K̃k

(a)H1~k!#%

k2~DCM1D0!

2
uK̃k

(a)H0~k!u2DCMh0~k!

k2~DCM1D0!2 D . ~2.10b!

In the quadratic coefficient, Re@ . . . # is the real part of its
argument. Both coefficients are derived from Eq.~2.5!, in
which, at very low concentrations, we approximate the to
correlation function byH(r )'H0(r )1nH1(r )1••• and the
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structure factor is approximated byS(k)511nh0(k), where
H0(r ), H1(r ), andh0(r ) are defined by

H0~r !5e2bc(r )21, ~2.11a!

H1~r !5e2bc(r )E d2r 1~e2bc(r1)21!~e2bu(ur12r u)21!,

~2.11b!

and

h0~r !5e2bu(r )21. ~2.11c!

From Eqs.~2.4!, ~2.5!, and ~2.9!, the corresponding expan
sion for the diffusion coefficientsDa

L of the nonspherica
tracer can be written as

Da
L

Da
0

512F ]

]n S Dja

ja
0 D G

n50

n1H F ]

]n S Dja

ja
0 D G

n50

2

2F1

2

]2

]n2 S Dja

ja
0 D G

n50
J n21••• . ~2.12!

This concludes the summary of the theoretical aspects o
GLE approach that we will need below. Let us now refer
the computer simulation of the model.

B. Computer simulation

From the computer simulation experiment, we can co
pute the time-dependent diffusion coefficientsDa(t)
[^@Dr a(t)#2&/2t of our nonspherical particle in th
intermediate-time regime@9#. Of course, we cannot comput
the properties of the tracer in the strictly long-time lim
However, in this paper we estimate these properties a
extrapolation of the available computer simulation data
Da(t). To fit the computer simulation data we use the e
pression@10#

Da~ t !

Da
0

5
Da

L

Da
0

2S Da
L

Da
0

21D S t0

t1t0
D , ~2.13!

whereDa
L and t0 are the fitting parameters to fit the nume

cal experimental data. The accuracy of Eq.~2.13! as a fitting
device is illustrated in Fig. 1. In this figure we present t
numerical simulation data and the corresponding fit for
translational and rotational diffusion coefficients of a dim
with a separation between its spheres ofDL510s, in a sus-
pension of reduced concentration of spheresn* 50.002. Ob-
viously, the parameterDa

L fitted in this manner provides a
approximate estimate of the true long-time diffusion coe
cient of the tracer, which is the most reliable reference
can use to confront our theoretical predictions for t
asymptotic long-time coefficientsDa

L .
Here we shall not provide the details of the Browni

dynamics simulation procedure, since they have been
ported and described elsewhere@8,9#. Instead, in the follow-
ing subsection, we proceed directly to the presentation of
extrapolated results and their use in the comparison with
theoretical predictions forDa

L .
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C. Comparisons

Before starting with the presentation and discussion
this comparison, it is important to comment on the followin
From Eq.~2.5! we can see that one important input of th
approximate theory is the total correlation functionH(r ) be-
tween the surrounding spheres and the tracer particle.
function is related to the local concentrationneq(r )
[nG(r ) of spheres around the tracer byH(r )5G(r )21. At
this point, let the local concentration of spheres be compu
directly from the computer simulation experiment, so tha
represents anexactinput for the theory. In the same manne
the structure factorS(k) of the homogenous suspensio
~without the tracer! is also obtained directly from the com
puter simulation. Thus, the theoretical prediction of the G
approach will exhibit only the effects of the two main a
proximations involved in the derivation of Eq.~2.5!, namely,
the homogeneity approximation and the use of a short-t
approximation for the self- and the collective diffusio
propagator of the supporting suspension, both of which w
discussed in previous publications@8,9#.

In Figs. 2 and 3 we present the comparison between
extrapolated and the theoretical results forDa

L for a dimer
(NT52) and a trimer (NT53), respectively, as a function o
the reduced concentration of surrounding spheres. In b
figures, we consider two values of the distanceDL between
nearest-neighbor spheres in the tracer, namely, 10s and 20s.
In all these figures, the lines are only a guide to the eye,
the symbols indicate the points at which the computer sim
lation and the theoretical calculations were performed.

As we can see from these figures, the theoretical pre
tions systematically underestimate the effects of the dir
interactions on all the diffusion coefficients. The quantitati
disagreement between the theoretical predictions and
simulated results are of the same order as those observ
the application of the same approximation to the calculat
of the tracer-diffusion coefficients ofspherical tracer par-
ticles @7#. Here also, the quantitative disagreement exhibi
in Figs. 2 and 3 illustrates the extent of the quantitative
curacy of the dynamic approximations involved in the de
vation of Eq.~2.5!.

The comparison in Figs. 2 and 3, however, also exhibit
complete qualitative agreement between the theoretical
culations and the simulated results, in reference to the fu
tional dependence ofDa

L(n) on the concentration of the sup

FIG. 1. Ilustration of the time-dependent diffusion coefficien
of a dimer (NT52). Symbols and solid line represent, respective
the numerical simulation results and its fit. In the figure,n* [ns2 is
the reduced concentration of spheres, andt0[s2/D0 is the time
scale.
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FIG. 2. Comparison between the long-tim
tracer diffusion coefficients of a dimer (NT52)
computed from the GLE approach~with exact
static inputs!, and from the extrapolation of the
numerical simulation data. Dashed and solid lin
are only a guide to the eye. The additional dash
line ~without symbols! represents the quadrati
expansion in the concentration of the diffusio
coefficients.
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porting suspension. Among the main features in which
observe full qualitative agreement, we can mention the
lowing. Notice, first, that in all cases,D'

L andD i
L exhibit an

upward initial curvature@(]2Da
L /]n2)n50.0#, opposite to

what is observes inDR
L . To further emphasize this point, w

have included in Figs. 2 and 3 the quadratic approximat
defined in Eq.~2.12! for the theoretical value ofDa

L(n)
~dashed line without symbols!. Notice, also, the changes i
curvature in DR

L(n) and D'
L (n) at higher concentrations

which our theoretical results capture generally quite c
rectly. As illustrated in Figs. 2 and 3, the various cases c
sidered (D'

L ,D i
L ,DR

L , for DL510s and DL520s, and for
NT52 and NT53) exhibit a much richer dependence o
concentration than the fully monotonic dependence alw
observed in the case of spherical tracer particles. The
that this qualitative richness is correctly contained in a sin
expression, such as Eq.~2.5!, indicates the usefulness of th
GLE approach to derive expressions for dynamic proper
in terms solely of the structural information contained
H(r ) andS(k).

As we have mentioned before, the theoretical predicti
that we have presented here were computed with exact~i.e.,
simulated! structural inputs, namely, the local concentrati
of the spheres around the tracer and the radial distribu
function of the homogenous fluid. Let us now present
theoretical predictions when we use approximate struct
inputs in Eq.~2.5!.

III. THE SUPERPOSITION APPROXIMATION

In the previous section, we presented the results of
~2.5! obtained when we used as inputs the exact struct
e
l-

n

-
-

s
ct
e

s

s

n
e
al

q.
al

information computed from the simulation experiment. Ho
ever, this approach has a high computational cost, part
larly referring to the computation of the local concentrati
of spheresneq(r ) around the tracer particle. Thus, a simp
form to approximate this function is indeed desirable. He
we consider approximating this distribution function by
superposition approximation@11#, as we have done in previ
ous work @12#. The superposition approximation forneq(r )
in the context of our model~in which the spheres that con
stitute the tracer are of the same type as those of the sus
sion! can be written as

neq~r !'n)
i 51

NT

g~ ur2Ri u!, ~3.1!

whereg(r ) is the radial distribution function of the homoge
neous supporting suspension. This radial function is rea
provided by the computer experiment at a much lower co
putational cost. In this section we present the effects of
local concentrationneq(r ) being approximated by the supe
position approximation, and then employed as the struct
input required in the general result of Eq.~2.5!.

In addition to the full superposition approximation fo
H(k) resulting from Eq.~3.1!, here we shall also consider
still simpler approximation, which we shall refer to as th
partial superposition approximation, which is theexactvalue
of H(r ) in the limit of large spacingDL between the sphere
that constitute the nonspherical tracer particle. In this lim
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FIG. 3. Same as Fig. 2, but for a trimer (NT

53).
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H~r ![)
i 51

NT

g~ ur2Ri u!21'(
i 51

NT

h~ ur2Ri u!, ~3.2!

whereh(r )5g(r )21 is the total correlation function of th
bulk suspension. Thus, the partial superposition approxi
tion for H(k) can be written as

H~k!'S (
i 51

NT

exp~ ik•Ri !D h~k!, ~3.3!

where h(k)5@S(k)21#/n. This is an approximation tha
further simplifies the calculation of the integral onk in Eq.
~2.5!.

In Figs. 4 and 5 we present a similar comparison as
Figs. 2 and 3, but this time between the simulation res
and the theoretical predictions of Eq.~2.5! with the structural
propertyH(r ) approximated according to the full superpo
tion approximation@Eq. ~3.1!# and to the partial superpos
tion approximation@Eq. ~3.3!#. Let us first notice that, in
general, both approximations provide quite a reasonable
scription @i.e., similar to the theoretical results with exa
input H(r ) as in the previous section# only for the rotational
diffusion coefficientDR

L for both the dimer and the trime
with the longest spacingDL520s @Figs. 4~f! and 5~f!#. A
similar statement could also be made forD'

L @Figs. 4~d! and
5~d!#, except that the results of the partial superposition
proximation now seems to be slightly more accurate at
concentrations, probably from some form of error cance
tion. In fact, this same trend can also be observed forDR

L and
a-

n
ts

e-

-

-

D'
L for the shortest spacingDL510s for the dimer@Figs.

4~a! and 5~a!# and the trimer@Figs. 5~a! and 5~e!#. In these
cases, particularly forDR

L , we find that the results of the ful
superposition approximation seem to be quantitatively a
even qualitatively less accurate than the results of the pa
superposition approximation. Thus, we may conclude th
taking into account the computational simplification of t
partial superposition approximation, it seems to provide
more useful approximation to use in a first-order descript
of DR

L andD'
L for both the dimer and the trimer, even at th

shortest spacingDL510s. In particular, notice thatDR
L ob-

tained for this spacing using the full superposition appro
mation overestimates rather strongly the effects of the in
actions at low concentrations, whereas the results of
partial superposition approximation lie closer to the simu
tion data, probably due to error cancellation.

The other general observation refers to the rather p
performance of the superposition approximation~both full
and partial! in the calculation ofD i

L , as illustrated in Figs.
4~b! and 4~e! for the dimer and in Figs. 5~b! and 5~e! for the
trimer. In these cases there is not even a pattern that cha
terizes the accuracy of either of these approximations w
regard to the calculation ofD i

L . In fact, in contrast to the
theoretical results of the previous section, in these cases
theoretical predictions are even qualitatively different fro
the simulation results.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented computer simulation
sults for the rotational and translational long-time diffusi
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FIG. 5. Same as Fig. 4, but for a trimer (NT

53).

FIG. 4. Comparison between the long-tim
tracer-diffusion coeficients from the GLE ap
proach with exact~diamonds! and approximate
~triangles: full superposition; crosses: partial s
perposition! input for neq(k).
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coeffiecientsDR
L , D'

L , andD i
L of a nonspherical tracer par

ticle that interacts with the spherical particles of a support
colloidal suspension. These long-time diffusion coefficie
were obtained from the extrapolation tot→` of the corre-
sponding time-dependent diffusion coefficient. The data t
obtained were employed as a reference to compare the
dictions of an approximate theory derived within the gen
alized Langevin equation formalism. This theory expres
Da

L in terms of the purely static structural propertiesH(k)
and S(k), and is based on two major dynamic approxim
tions, whose accuracy we wanted to assess.

In order to do that, in Sec. II we presented the theoret
results forDa

L obtained using the exact~i.e., simulated! val-
ues for the static inputsH(k) andS(k). This allowed us not
to introduce additional approximations, so as to see only
effect of the so-called homogeneity and short-time appro
mations involved in the derivation of Eq.~2.5!. Comparing
the results thus obtained with the computer simulation d
for Da

L led us to the general conclusion that the theoret
values ofDa

L generally understimate the effects of the dire
interactions, to a similar extent as observed before for sph
cal tracer particles. Other than this systematic quantita
disagreement, we can observe overall a quite good ag
ment with the simulation data, particularly with regard to t
qualitative dependence ofDa

L(n) on the concentration o
spheres. This was particularly clear, for example, in the s
of the initial curvature ofDa

L(n), as illustrated in Figs. 2 and
3 by the quadratic expansion of the theoretical expression
Da

L(n).
All these conclusions refer to the approximate GLE the

retical results obtained using the exact static inputsH(k) and
S(k). In Sec. III we also explored the quality of the approx
So

. E
g
s

s
re-
-
s

-

l

e
i-

ta
l

t
ri-
e
e-

n

or

-

mate results obtained from the same GLE expression forDa
L ,

but when, instead of the exactH(k), we employed some
form of approximation for this static input. We considere
two approximations forH(k), namely, the full~Kirkwood!
supperposition approximation and what we called the par
superposition approximation. We found that the partial s
perposition approximation~for the particular caseDL
510s) gave better results for systems with intermediate a
high concentrations of spheres. This is, of course, the s
plest way to approximate the functionH(r ). However, for
systems withDL520s, both approximations~the total and
the partial superposition approximation! gave results similar
to those of the theory with exact inputs.

In summary, the results in this paper showed that the G
theory of rotational and traslational diffusion of nonspheric
particles provides a useful and accurate description of
experimental~i.e., simulated! behavior of the simple mode
system considered in this work. The comparisons prese
in this paper, in addition, will be useful in the process
applying the GLE theory to more realistic systems and c
ditions.
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México!, and the National Science Foundation~Grant No.
PHY94-07194!, and the kind hospitality of the Institute o
Theoretical Physics of the University of California at San
Barbara.
-
m.
-

.

.

@1# B. U. Felderhof and R. B. Jones, Faraday Discuss. Chem.
76, 179 ~1983!.

@2# P. Pusey, inLiquids, Freezing and Glass Transition, edited by
J. P. Hansen, D. Levesque, and J. Zinn-Justin~Elsevier, Am-
sterdam, 1991!, Chap. 10.

@3# Colloid Physics, edited by G. Na¨gele, B. D’Aguanno, and A.
Z. Akcasu, Physica A235, 1 ~1997!.

@4# J. McConnell, Rotational Brownian Motion and Dielectric
Theory~Academic Press, London, 1980!.

@5# M. Medina-Noyola, Faraday Discuss. Chem. Soc.83, 21
~1987!; A. Viscarra-Rendo´n, M. Medina-Noyola, and R. Klein,
Chem. Phys. Lett.173, 397 ~1990!.

@6# M. Hernández-Contreras and M. Medina-Noyola, Phys. Rev
53, R4306~1996!; 54, 6573~1996!; 54, 6586~1996!.
c.@7# H. Aranda-Espinoza, M. Carbajal-Tinoco, E. Urrutia
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