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Long-time tracer diffusion of nonspherical Brownian particles
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The long-time tracer-diffusion properties of a nonspherical Brownian particle that interacts with a suspen-
sion of spherical particles are studied in terms of an idealized but nontrivial two-dimensional model system.
For this system, the predictions of the generalized Langevin equation approach to tracer diffusion can be
calculated, and compared with thextrapolatetlresults of a computer simulation experiment. In the model,
the nonspherical particle is represented by a rigid linear arraj0f=2 or 3 spherical particles with
nearest-neighbor separatidrh.. We calculate the long-time rotational aftcansverse and longitudinarans-
lational diffusion coefficients. The theory is found to reproduce qualitatively and quantitatively the main
features of the extrapolated results. Finally, we also present theoretical results that derive from still simpler
approximate theoretical schemes.

PACS numbsds): 05.20-y

[. INTRODUCTION port and analyze these theoretical results in the context of
their comparison with the calculation of the same properties
The diffusion properties of suspensionssphericalcol-  computed through an extrapolation procedure applied to the

loidal particles have been the subject of considerable intere§rownian dynamics simulation data of the model. In Sec. IlI
for many years[1-5]. In fact, there are some theoretical We present and analyze the results of the application of the
methods aimed at explaining the main features of these dyGLE approach together two approximations, namely, the to-
namic properties in terms of interparticle ford@s-5]. How-  tal and partial superposition approximations. Finally, Sec. IV
ever, the statistical mechanical description of the diffusioncontains a brief summary of the most relevant conclusions.
properties of suspensions involvimgnsphericalparticles is
still to be developed. Recently, however, one such method, [l. ANALYSIS OF THE LONG-TIME REGIME
namely, the generalized Langevin equati@LE) approach
to tracer diffusion[5] has been extend€d] to study the
Brownian motion of a suspension with nonspherical par- Our system consists of a two-dimensional model Brown-
ticles. In this paper, we present the predictions of this theoian fluid of spherical particles that interact through the hard-
retical approach as applied to the description of the diffusiorsphere plus repulsive Yukawa pair potential
properties of nonspherical colloidal tracer particles. The non-
spherical Brownian particle of our model system is repre- Bu(r) = Kexg—z(rlo=1)]/(r/o), r>0 2.1)
sented by a linear array & (=2 or 3 spherical particles +oo r<o, '
with nearest-neighbor separatidri, rigidly bound to each . ) .
other by imaginary forces. This nonspherical particle ex-Where o is the hard-sphere diametes, ‘=kgT, with kg
ecutes Brownian motion while interacting with the Brownian Peing Boltzmann’s constant aridthe temperaturez is the
particles of the supporting two-dimensional colloidal suspenScreening parametéin units of o), andK is the potential
sion only through direct interactior(ge., in the absence of €nergy of two particles at contact, in units lfT. These
hydrodynamic interactiothere we report some aspects of SpheriCal(i.e., circular or disklike in our two-dimensional
our study of tracer-diffusion phenomena in this simple butsystem particles are present at bulk number concentration
not trivial model system. We study the dependence of théor reduced number concentratiafi =no?). In addition to
long-time rotational and traslational diffusion coefficients ofthese spherical Brownian particles, we also have a single
the nonspherical particle on parameters such as the partici@nsphericaBrownian particle, namely, a rigid linear array
concentrationn of the supporting suspension. Our aim is Of Nt spherical particles, whose interaction with one of the
only to describe a few general features of these long-timéfree” spheres located at positionis given by
properties, and to assess the accuracy of the predictions of Ny
the GLE approach, by means of their comparison with the _
results of a computer simulation experiment. v(r)= 21 u(r=Ri), 22

In the following section we provide a detailed definition
of our model system, and summarize the theoretical basis afhere R; (i=1,2,...Ng) are the positions of theN;
the approximate theoretical calculation of its time-dependenspheres that constitute the nonspherical particle. In the refer-
tracer-diffusion properties in the long-time regime. We re-ence frame attached to this rigid array, each one ofRhe

A. Generalized Langevin equation approach
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remains constant and is chosen to lie along¥fais, so that pers[8,9], from which we adopt all the definitions and con-
its Cartesian coordinates ar&;=0 and Y;=(N;+1 cepts. Thus, the paramef®@f,,= (D% + Dﬁ)/z in Eq.(2.5 is
—2i)AL/2. In this paper we consider only two cases,the free-diffusion coefficient of the center of mass of the
namely, a “dimer” (Ny=2) and a “trimer” (N;=3). Fur-  tracer defined in terms of the perpendicular and parallel dif-
thermore, throughout this work we shall keep the values ofusion coefficients. As in Ref$8] and[9], the translational
the Yukawa parameters fixed ko=500 andz=0.15, which  and rotational free-diffusion coefficients of the tracer are as-
correspond to a system and conditions widely studied elsesumed to be given by

where in the absence of the nonspherical tracer palftidle

The purpose of this work is to present results for the long- DY=DJ=D%N; and DR=DYN;R? (2.7
time translational and rotational diffusion coefficients, de-
fined as whereR is the radius of gyration of our nonspherical par-
) ticle, i.e.,
Ar (t
DL= Iimw, a=1,R, 2.3 Ny
t—oo 2t 2 2
R2=> r?INg, (2.9

i=1

whereAr , (t) andAr(t) are, respectively, the components

of the translational displacement of the tracer particle’s cenwith r; being the distance between tik sphere of the tracer
ter of mass at time in the transversel() and longitudinal  particle and the tracer’s center of mass. The definition of the
(I[) directions refered to the particle’s main axis, whereasfree-diffusion coefficients given in Eq2.7) is in terms of
Arg(t) is the angular displacement at tiheThe long-time  the free-diffusion coefficienD® of a free sphere. The spe-
diffusion coefficients contain information on the effects of cific value ofD° will not be needed, since this parameter will
direct interactions between the tracer particle and all thenly be used to define dimensionless quantities. Finally, the
spherical particles around it. On the other hand, these diffufree-diffusion coefficients of the tracerD@) and of the
sion coefficients are related to the friction coefficients bysphere D°) are related to the friction coefficient§ and£°,
Einstein’s relation, respectively, through the Einstein relatiod§=kgT/£2 and

DO=KkgT/&°.
L_ ke T (2.4) Additionally, in order to understand the predicted behav-
“ E2+Ag, ior of D" as a function of the concentratiorof the support-

ing suspension, it will be convenient to analyze the coeffi-
where&? is the free-diffusion friction coefficienti.e., in the  cients of the expansion oD% in a power series of the
absence of interactionswhereasA ¢, represents the contri- concentration. For this purpose, we first derive the expansion
bution of the direct interactions to the total effective friction of the friction functionA &, in Eqg. (2.5), i.e.,
on the tracer. This term ¢, in Eq. (2.4) is the time integral

of the time-dependent friction functioA&,(t). The main AE, d [ AE, 1 0% [Ag,
result of the generalized Langevin equation apprd&glis a 0 | gn| 20 n+ 5.7 0 ne+...,
general expression for this property. For our model system, £a Sa n=0 IN"\ &q n=0

an approximate form of such a general expression, on which 2.9

we will base our present work, is o ) )
where the coefficients of the linear and quadratic terms are

. KeTn |R(k"‘)H(k)|2 given, respectively, by
Agazf dtAE,(t)= 2] ?k— 5 o B
0 (27) k“S(k)Dgy+D 22 5 i % - D, f 2k|Kﬁa)H0(k)|2
' n\ g )] _, 2m?) " K(Dey+D?'
In this expression$(K) is the structure factor of the colloidal (2.103
fluid in the absence of the nonspherical tracer. The function
H (k) is the Fourier transform of the total correlation func- 1 62 [A¢
tion H(r) between the tracer and a sphere of the fluid, i.e., [— — 0“
H(r)=G(r)—1, wheren®%r)=nG(r) is the local concen- 2.9n?\ & n=0
tration of the spheres at positieraround the tracer particle. = () = (o)
~ o * [e3
The operatorK(® are defined by _ Da J 42K 2 Re[(KHo(K) T*[K*H 1 (K) I}
5 5 (2m)? k?(Dcu+DO)
KAL)= _j k= _; KR=p — |
M= ke =Tk KGR T g |[K{H (k)| 2D chol(k)
k 0 cMtio
(2.6 - (2.10b
k*(Dcu+D9)?

In this paper, we focus on the application of this expres-
sion for the friction function to compute the diffusion coef- In the quadratic coefficient, Re. .] is the real part of its
ficients of our nonspherical particle as a function of the con-argument. Both coefficients are derived from E2.5), in
centrationn of the spherical particles. The details of the which, at very low concentrations, we approximate the total
derivation of Eq.(2.5) for A&,(t) are given in previous pa- correlation function byH(r)~Hq(r)+nH(r)+- - - and the
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structure factor is approximated I8¢(k) = 1+ nhgy(k), where 1.0 4 11 .
Ho(r), Hi(r), andhy(r) are defined by 1 -
° 3 0.8 =
Ho(r)=e #¥N—1, (2.113 - - -
o~ 0.6_ —
Z |l «
Hl(r)zefﬁw(r)f dzrl(efﬂ‘//(rl)_1)(efﬁu(‘r17r|)_1), o 044 : ‘l‘l —
1 (& L] #*=0002, aL=100 |
(2.11b 0.2 +————1——7—7—
0 20 40 60 80 100
and t/ T

ho(r)=e AU —1. (2.119 FIG. 1. llustration of the time-dependent diffusion coefficients

) of a dimer (N;=2). Symbols and solid line represent, respectively,
From Egs.(2.4), (2.5), and(2.9), theLCOYrGSPond'ng expan-  the numerical simulation results and its fit. In the figure=no? is
sion for the diffusion coefficient® ; of the nonspherical the reduced concentration of spheres, afie 02/D, is the time

tracer can be written as scale.
DY J [ AE, a [ A¢, 2 C. Comparisons
DO T |dn| & S an\ g S Before starting with the presentation and discussion of
" "= this comparison, it is important to comment on the following.
1 8 [Ag, From Eq.(2.5) we can see that one important input of the
“12°2 0 n?+ (212 approximate theory is the total correlation functidir) be-
In"\ &g n=0 tween the surrounding spheres and the tracer particle. This

_ . function is related to the local concentration®9(r)
This concludes the summary of the theoretical aspects of the hg(r) of spheres around the tracer Byr)=G(r) — 1. At

GLE approach that we will need below. Let us now refer tothjs point, let the local concentration of spheres be computed

the computer simulation of the model. directly from the computer simulation experiment, so that it
represents aexactinput for the theory. In the same manner,
B. Computer simulation the structure factorS(k) of the homogenous suspension

From the computer simulation experiment, we can Com_(Without the traceris also obtained directly from the com-
pute the time-dependent diffusion coeffi,cienlé (t) puter simulation. Thus, the theoretical prediction of the GLE

=([Ar,(t)]?)/2t of our nonspherical particle in the approach will exhibit only the effects of the two main ap-

intermediate-time regimgd]. Of course, we cannot compute proximations iqvolved in .the Qerivation of (.5, namely, .
the properties of the tracer in the strictly long-time limit. the homogeneity approximation and the use of a short-time

However, in this paper we estimate these properties as gpProximation for the self- and the collective diffusion
extrapolation of the available computer simulation data fofPropagator of the supporting suspension, both of which were

- : : discussed in previous publicatiof®,9].
D,(t). To fit the computer simulation data we use the ex- _ ' .
(1) P In Figs. 2 and 3 we present the comparison between the

pression 10] ) X
extrapolated and the theoretical results B for a dimer
D,(t) D'; D; 0 (Nt=2) and a trimer K\IT_: 3), respective!y, as a function of
-0 | =01 (t+t ) (2.13 the reduced concentration of surrounding spheres. In both
D, D, \D, 0 figures, we consider two values of the distaride between

L o ] _ nearest-neighbor spheres in the tracer, namely,drtd 20r.
whereD, andt, are the fitting parameters to fit the numeri- | all these figures, the lines are only a guide to the eye, and
cal experimental data. The accuracy of E13 as afitting  the symbols indicate the points at which the computer simu-
device is illustrated in Fig. 1. In this figure we present thejation and the theoretical calculations were performed.
numerical simulation data and the corresponding fit for the As we can see from these figures, the theoretical predic-
translational and rotational diffusion coefficients of a dimertions Systematica”y underestimate the effects of the direct
with a separation between its spheres\df= 100, in a sus-  nteractions on all the diffusion coefficients. The quantitative
pension of reduced concentration of spheres-0.002. Ob-  disagreement between the theoretical predictions and the
viously, the paramete?, fitted in this manner provides an simulated results are of the same order as those observed in
approximate estimate of the true long-time diffusion coeffi-the application of the same approximation to the calculation
cient of the tracer, which is the most reliable reference weof the tracer-diffusion coefficients a$pherical tracer par-
can use to confront our theoretical predictions for theticles[7]. Here also, the quantitative disagreement exhibited
asymptotic long-time coefficien®" . in Figs. 2 and 3 illustrates the extent of the quantitative ac-

Here we shall not provide the details of the Browniancuracy of the dynamic approximations involved in the deri-
dynamics simulation procedure, since they have been reration of Eq.(2.5).
ported and described elsewh¢&9]. Instead, in the follow- The comparison in Figs. 2 and 3, however, also exhibits a
ing subsection, we proceed directly to the presentation of theomplete qualitative agreement between the theoretical cal-
extrapolated results and their use in the comparison with theulations and the simulated results, in reference to the func-
theoretical predictions foID';. tional dependence (D';((n) on the concentration of the sup-
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porting suspension. Among the main features in which wanformation computed from the simulation experiment. How-
observe full qualitative agreement, we can mention the folever, this approach has a high computational cost, particu-
lowing. Notice, first, that in all case®" and DHL exhibit an  larly referring to the computation of the local concentration
upward initial curvature[(azD';l/anz)n:0> 0], opposite to  of spheremn®d(r) around the tracer particle. Thus, a simple
what is observes iDy. To further emphasize this point, we form to approximate this function is indeed desirable. Here
have included in Figs. 2 and 3 the quadratic approximatiorwe consider approximating this distribution function by its
defined in Eqg.(2.12 for the theoretical value oD;(n) superposition approximatidril], as we have done in previ-
(dashed line without symbolsNotice, also, the changes in ous work[12]. The superposition approximation faf9(r)
curvature in Dk(n) and Dh(n) at higher concentrations, in the context of our modelin which the spheres that con-
which our theoretical results capture generally quite corstitute the tracer are of the same type as those of the suspen-
rectly. As illustrated in Figs. 2 and 3, the various cases consion can be written as
sidered D' ,Dj,Dg, for AL=100 and AL =200, and for
N;=2 and N;=3) exhibit a much richer dependence on
concentration than the fully monotonic dependence always
observed in the case of spherical tracer particles. The fact
that this qualitative richness is correctly contained in a single
expression, such as E.5), indicates the usefulness of the
GLE approach to derive expressions for dynamic properties ) o )
in terms solely of the structural information contained inWhereg(r) is the radial distribution function of the homoge-
H(r) and S(k). neous supporting suspension. This radial function is readily
As we have mentioned before, the theoretical prediction®rovided by the computer experiment at a much lower com-
that we have presented here were computed with ekact ~ putational cost. In this section we present the effects of the
simulated structural inputs, namely, the local concentrationlocal concentratiom®9(r) being approximated by the super-
of the spheres around the tracer and the radial distributioposition approximation, and then employed as the structural
function of the homogenous fluid. Let us now present thanput required in the general result of EQ.5).
theoretical predictions when we use approximate structural In addition to the full superposition approximation for
inputs in Eq.(2.5). H(k) resulting from Eq(3.1), here we shall also consider a
still simpler approximation, which we shall refer to as the
. THE SUPERPOSITION APPROXIMATION partial superposition approximation, which is tegactvalue
In the previous section, we presented the results of Eqef H(r) in the limit of large spacing\L between the spheres
(2.5 obtained when we used as inputs the exact structurdhat constitute the nonspherical tracer particle. In this limit,

Nt

neq(r>~ni1]1 g(Ir—Ri), (3.
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Ny Ny D' for the shortest spacingL =100 for the dimer[Figs.
H=IT g(r-RD-1=> h(r—=Ri]), (3.2  4(@ and 5a)] and the trimefFigs. 5a) and Fe)]. In these

=1 =1 cases, particularly fobk, we find that the results of the full
: . . superposition approximation seem to be quantitatively and
whereh(r)=g(r)—1 is the total correlation function of the evgn gualitativeﬁ/pless accurate than the reqsults of the )pgartial
pulk suspension. Thus,-the partial superposition approximas,perposition approximation. Thus, we may conclude that,
tion for H(k) can be written as taking into account the computational simplification of the
partial superposition approximation, it seems to provide a
more useful approximation to use in a first-order description
of D andD" for both the dimer and the trimer, even at the
shortest spacindL =10c. In particular, notice thalDE ob-
where h(k)=[S(k)—1]/n. This is an approximation that tain_ed for this _spacing using the full superposition app_roxi-
further simplifies the calculation of the integral &nin Eq. mation overestimates rath(_ar strongly the effects of the inter-
(2.5). actions at low concentrations, .whelreas the results_of the

In Figs. 4 and 5 we present a similar comparison as i,partlal superposition approximation lie clc_)ser to the simula-

Figs. 2 and 3, but this time between the simulation resultdion data, probably due to error cancellation.
and the theoretical predictions of E&.5) with the structural The other general observation refers to the rather poor
propertyH(r) approximated according to the full superposi- Performance of the supe.rposmorc approximati@oth full
tion approximationEq. (3.1)] and to the partial superposi- and partial in the calculation o, as illustrated in Figs.
tion approximation[Eq. (3.3)]. Let us first notice that, in 4(b) and 4e) for the dimer and in Figs.(6) and Fe) for the
generaL both approximations provide quite a reasonable dé[imer. In these cases there is not even a pattern that charac-
scription [i.e., similar to the theoretical results with exact terizes the accuracy of either of these approximations with
input H(r) as in the previous sectionly for the rotational  regard to the calculation db| . In fact, in contrast to the
diffusion coefficientDR, for both the dimer and the trimer theoretical results of the previous section, in these cases the
with the longest spacing L =20 [Figs. 4f) and 5f)]. A  theoretical predictions are even qualitatively different from
similar statement could also be made B [Figs. 4d) and ~ the simulation results.
5(d)], except that the results of the partial superposition ap-
proximation now seems to be slightly more accurate at low
concentrations, probably from some form of error cancella- In this work we have presented computer simulation re-
tion. In fact, this same trend can also be observe®fgand  sults for the rotational and translational long-time diffusion

Nt

H(k)~<2 exp(ik-R;)

=1

h(k), (3.3

IV. SUMMARY AND CONCLUSIONS
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coeffiecientsDk, Di , and Dh of a nonspherical tracer par- mate results obtained from the same GLE expressiotqr
ticle that interacts with the spherical particles of a supportingout when, instead of the exatt(k), we employed some
colloidal suspension. These long-time diffusion coefficientsform of approximation for this static input. We considered
were obtained from the extrapolation te-o of the corre- two approximations foH (k), namely, the full(Kirkwood)
sponding time-dependent diffusion coefficient. The data thusupperposition approximation and what we called the partial
obtained were employed as a reference to compare the prsuperposition approximation. We found that the partial sup-
dictions of an approximate theory derived within the gener-perposition approximation(for the particular caseAL
alized Langevin equation formalism. This theory expresses=100) gave better results for systems with intermediate and
Db in terms of the purely static structural propertid$k) high concentrations of spheres. This is, of course, the sim-
and S(k), and is based on two major dynamic approxima-plest way to approximate the functidf(r). However, for
tions, whose accuracy we wanted to assess. systems withAL =200, both approximationsgthe total and

In order to do that, in Sec. Il we presented the theoreticathe partial superposition approximatjogave results similar
results forD"; obtained using the exaéite., simulategival-  to those of the theory with exact inputs.
ues for the static inputisl (k) andS(k). This allowed us not In summary, the results in this paper showed that the GLE
to introduce additional approximations, so as to see only théheory of rotational and traslational diffusion of nonspherical
effect of the so-called homogeneity and short-time approxiparticles provides a useful and accurate description of the
mations involved in the derivation of E¢2.5). Comparing  experimentali.e., simulated behavior of the simple model
the results thus obtained with the computer simulation datgystem considered in this work. The comparisons presented
for D% led us to the general conclusion that the theoreticaln this paper, in addition, will be useful in the process of
values ofD% generally understimate the effects of the direct@PPlying the GLE theory to more realistic systems and con-
interactions, to a similar extent as observed before for spherfitions.
cal tracer particles. Other than this systematic quantitative
disagreement, we can observe overall a quite good agree- ACKNOWLEDGMENTS
ment with the simulation data particularly with regard to the  This work was supported by the Consejo Nacional de
qualitative dependence db.(n) on the concentration of Cjencia y Tecnolog (CONACYT, Mexico) through Grant
spheres. This was partlcularly clear, for example, in the sigiNo. G295889E and financial support for F.J.G.R. M.M.N.
of the initial curvature oD «(n), as illustrated in Figs. 2 and also acknowledges the support of the Programa de Simula-
3 by the quadratic expansion of the theoretical expression fagion Molecular del Instituto Mexicano del Peteo (IMP,
DY (n). México), and the National Science Foundatic@rant No.

All these conclusions refer to the approximate GLE theo-PHY94-07194, and the kind hospitality of the Institute of
retical results obtained using the exact static inpitg) and  Theoretical Physics of the University of California at Santa
S(k). In Sec. Il we also explored the quality of the approxi- Barbara.

[1] B. U. Felderhof and R. B. Jones, Faraday Discuss. Chem. Soc[7] H. Aranda-Espinoza, M. Carbajal-Tinoco, E. Urrutia-

76, 179(1983. Baruelos, J. L. Arauz-Lara, and M. Medina-Noyola, J. Chem.
[2] P. Pusey, irLiquids, Freezing and Glass Transitipedited by Phys.101, 10 925(1994; H. Aranda-Espinoza, M. Medina-

J. P. Hansen, D. Levesque, and J. Zinn-Jugiisevier, Am- Noyola, and J. L. Arauz-Larabid. 99, 5462(1993.

sterdam, 1994 Chap. 10. . [8] F. de J. Guevara-Rodjuez and M. Medina-Noyola, J. Chem.
[3] Colloid Physics edited by G. Ngele, B. D'’Aguanno, and A. Phys.111, 1049(1999.

Z. Akcasu, Physica 235 1 (1997. [9] F. de J. Guevara-Rogjuez and M. Medina-Noyola, J. Chem.
[4] 3. McConnell, Rotational Brownian Motion and Dielectric Phys.111, 1060(1999.

Theory(Academic Press, London, 1980 [10] H. Lowen, J. Phys. Condens. Mattr10 105(1992; 5, 2649

[5] M. Medina-Noyola, Faraday Discuss. Chem. S@8 21
(1987; A. Viscarra-Rendn, M. Medina-Noyola, and R. Klein,
Chem. Phys. Lettl73 397 (1990.

[6] M. Hernandez-Contreras and M. Medina-Noyola, Phys. Rev. E
53, R4306(1996); 54, 6573(1996; 54, 6586(1996.

(1993; Phys. Rev. B53, R29(1996.

[11] J. G. Kirkwood, J. Chem. Phy8, 300 (1935.

[12] F. de J. Guevara-Roduez and M. Medina-Noyola, Mol.
Phys.95, 621(1998.



